Unit 7 - Lesson 7
Recursion

° ¢ Computer Science A

aa
(0] ¢ |

Fractal art is created by
repeating simple patterns.
It can be found in:

e computer-generated art

e darchitecture

e computer-generated
landscapes and scenery

S/ SR S R N R TR e R

.. €CSA Recursion - Warm Up . O O

HOLD that » Discuss:
THOUGHT How is repetition used in fractal art?

.7 CSA Recursion - Activity

%4’ Question of the Day

What is recursion?

.7 CSA Recursion - Activity

I_ ..)) The base case is the
| public int recursiveSum(int num) { instance where a recursive
if (num <= 1) |{ method will return a value

rather than calling itself.
return num;

The recursive
case is the instance
where the recursive
method calls itself.

return num + recursiveSum(num - 1);

Recursion is when a method calls itself.

7 Unit 7 Guide

.7 CSA Recursion - Activity

The base case comes from the part of the iterative method that
stops the repetition. It occurs when a certain condition is met.

public int recursiveSum(int num) {
int sum = 0;

for (int 1 = num; i > @; i--) {
sum += 1i;

}

return sum;

public int recursiveSum(int num) {

ifl(num <= 1)|{
return num,

return num + recursiveSum(num - 1);

/7 Unit 7 Guide

.7 CSA Recursion - Activity

The recursive case from from the part of the
iterative method that repeats.

public int recursiveSum(int num) {
int sum = 9;

for (int i = num; i > @; i--) {
sum += 1i;

}

return sum;

public int recursiveSum(int num) {

I if (num <= 1) { I

return num;
| |
I return num + recursiveSum(num - 1); I
| |
_/ Unit7 Guide

-7 CSA Recursion - Activity " N XNO)

The parameter values
if (num <= 1) { capture the progress of
a recursive process, just
like how loop control

} variables capture the
progress of a loop.

| public int recursiveSum(int num) {

return num;

return num + recursiveSum(num - 1); |

The recursive call has its own set of local variables,
including the formal parameters.

.7 CSA Recursion - Activity
2 Recursion

When is recursion useful?

Complete the guided notes
onthe / Unit7 Guide.

RECURSION

Cls/A,

Qe

.7 CSA Recursion - Activity

Factorial.java

i public int factorial(int n) { i factorial(5) return 5 * factorial(4)
' if (n == 1) { :
| return 1; | l 5% 24 =120
) e
5 else { ; factorial(4) return 4 * factorial(3)
i return n * factorial(n - 1);
) ; l 4 %6 =24
) : .
L : factorial(3) return 3 * factorial(2)
. , l 3%2 =6
What is the result of factorial(5)?
factorial(2) return 2 * factorial(l)
120 l 2 %1 =2
factorial(1) return 1

@ /7 Unit 7 Guide

-7 CSA Recursion - Activity

r ® ° _
74 Do This: N

Activity Guide - Recursion Unplugged

Recursion in Action

C O I I I p I e t e I a rt B Of t I I e Today, you will learn about a new programming concept called recursion. To get started, you and a partner will

choose one of three activities to complete. Read over the choices below and circle your choice below:

Wall Walking Cup Stacking Coloring
(] Model a program that navigates a | Model a program that creates a Model a program that colors
robot to a wall and stops them pyramid of a given number of cups | specific shapes in an image
° before they crash

You and your partner should have:

1. Wall Walking: One set of Wall Walking method cards
2. Cup Stacking: 10 paper or plastic cups, one set of Cup Stacking method cards

3. Coloring: One coloring sheet, One marker or colored pencil, one set of Coloring method cards

Directions

1. Retrieve all necessary materials listed above

2. One student should be the Computer, and one student will be the Counter.

3. The student acting as the Computer starts with the stack of cards. All cards should begin Side A up.
4. The Computer will read Side A and do the action indicated by the method

5. Once the Computer has completed the action, they will hand the card to the Counter.

6. The Computer will repeat steps 4 and 5 until the card indicates they should stop.

7. The Counter will return the requested information once indicated

-7 CSA Recursion - Wrap Up . . .

B2 Key Vocabulary

e base case: the instance where a recursive method
will return a value rather than calling itself

e recursion: when a method calls itself

e recursive case: the instance where a recursive
method calls itself

